Products | Support | Email a link to this topic. | Send comments on this topic. | Back to Introduction - All Topics | Help Version 19.0.3.23
|
public class RasterPaintCallbacks
'Declaration
Public Class RasterPaintCallbacks
'Usage
Dim instance As RasterPaintCallbacks
public ref class RasterPaintCallbacks
The RasterPaintCallbacks class can contain one or more custom paint callbacks.
The callbacks are used to
Typically, you would create a class for each display adapter you want to support and add them all to the RasterPaintProperties.PaintCallbacks list. The reason for needing a list is this: the computer running the application might have more than one monitor and more than one display adapter. The user can drag the window from one monitor to another so you should populate the RasterPaintProperties.PaintCallbacks list with all the custom paint objects compatible with the display adapters in the system. Or you can just add all the display adapters you can support since the overhead for having unnecessary callbacks in the list is low.
Whenever the Leadtools.RasterImage object needs to paint, it searches through the RasterPaintProperties.PaintCallbacks list until it finds a compatible RasterPaintCallbacks object. If the list is empty or there is no compatible RasterPaintCallbacks object, the default paint functions are used.
This C++ example will show the use of the RasterPaintProperties.PaintCallbacks property to implement custom callbacks.
For a full example source project that works with Barco Display devices, please contact Technical Support.
/* Use GlobalAlloc instead of malloc to avoid some known errors ("The string binding is invalid") when an application written in C++/CLI exits, These errors were supposed to be solved in Visual Studio 2005, but we have encountered them during development. So we switched to using GlobalAlloc in order to avoid complicating the code unnecessarily with workarounds for these Microsoft compiler problems. */ /***************** Macros ********************/ #define ALLOC(SIZE) GlobalAllocPtr(GMEM_MOVEABLE, SIZE) #define FREE(PTR) GlobalFreePtr(PTR) #define REALLOC(PTR, NEWSIZE) GlobalReAllocPtr(PTR, NEWSIZE, GMEM_MOVEABLE) #define DIB_WIDTH_BYTES(pixels) ((((pixels) + 31) & ~31) << 3) #define SAFE_FREE(PTR) { if(PTR) { FREE(PTR); (PTR) = NULL; } } #define GET_HIGHBIT(IMAGE, HIGHBIT) ((HIGHBIT) == -1 ? (IMAGE)-<BitsPerPixel - 1 : (HIGHBIT)) /* Hardcoded define that tells whether the LUT should be applied by the hardware or not. We are leaving it here to show you how you can choose whether to pay attention to the lookup table or not */ #define IGNORELUT TRUE using namespace System; using namespace Leadtools; using namespace Leadtools::Drawing; namespace GrayCallbacks { // This class will convert a grayscale bitmap to a 16-bit image which has the // image data in the low 12 bits. // // This type of image data can be be useful in painting to advanced // medical display adapters that can display more than 256 shades of gray. // // One example of such display can be found at www.barco.com // // This example will also show you how to implement your own function // for converting the image data. The built-in conversion function is capable of // performing this conversion, but we are implementing it as an example. public ref class MyRasterPaintCallbacks : public IDisposable { public: MyRasterPaintCallbacks(); public: ~MyRasterPaintCallbacks(); public: !MyRasterPaintCallbacks(); // return a RasterPaintCallbacks class public: RasterPaintCallbacks^ _rasterPaintCallbacks; public: RasterPaintCallbacks^ GetRasterPaintCallbacks() { return _rasterPaintCallbacks; }; // member variables needed for the painting operations. These are volatile and change for each paint call unsigned char *_LocalConvertBuffer; unsigned int _LocalConvertBufferSize; // callbacks public: Object^ IsCompatibleDCCallback(RasterImage^ image, array>Object^<^ args); public: Object^ GetDibInfoCallback(RasterImage^ image, array>Object^<^ args); public: Object^ ConvertLineCallback(RasterImage^ image, array>Object^<^ args); public: Object^ StretchDIBitsCallback(RasterImage^ image, array>Object^<^ args); public: Object^ PrePaintCallback(RasterImage^ image, array>Object^<^ args); // internal functions private: unsigned char *AllocateConvertBuffer(unsigned int uBytes); }; MyRasterPaintCallbacks::MyRasterPaintCallbacks() { _rasterPaintCallbacks = gcnew RasterPaintCallbacks(); PaintCallbackDelegate ^f; f = gcnew PaintCallbackDelegate(this, &MyRasterPaintCallbacks::IsCompatibleDCCallback); _rasterPaintCallbacks-<SetCallback(RasterImagePaintCallbackFunction::IsCompatibleDCCallback, f); f = gcnew PaintCallbackDelegate(this, &MyRasterPaintCallbacks::GetDibInfoCallback); _rasterPaintCallbacks-<SetCallback(RasterImagePaintCallbackFunction::GetDibInfoCallback, f); f = gcnew PaintCallbackDelegate(this, &MyRasterPaintCallbacks::ConvertLineCallback); _rasterPaintCallbacks-<SetCallback(RasterImagePaintCallbackFunction::ConvertLineCallback, f); f = gcnew PaintCallbackDelegate(this, &MyRasterPaintCallbacks::StretchDIBitsCallback); _rasterPaintCallbacks-<SetCallback(RasterImagePaintCallbackFunction::StretchDIBitsCallback, f); f = gcnew PaintCallbackDelegate(this, &MyRasterPaintCallbacks::PrePaintCallback); _rasterPaintCallbacks-<SetCallback(RasterImagePaintCallbackFunction::PrePaintCallback, f); } // destructor - might not get called all the time MyRasterPaintCallbacks::~MyRasterPaintCallbacks() { this-<!MyRasterPaintCallbacks(); } // finalizer - will always be called at some point MyRasterPaintCallbacks::!MyRasterPaintCallbacks() { SAFE_FREE(_LocalConvertBuffer); } /* This function tells LEADTOOLS whether the HDC is for a compatible display device. If the display is not a compatible, the normal paint functions are used instead of my paint functions. Since my advanced device is useful for rendering 12-bits of grayscale data, we will lie and say the device is not compatible if the image is not 12/16-bit grayscale. Parameters: Param0: HDC hdc */ Object^ MyRasterPaintCallbacks::IsCompatibleDCCallback(RasterImage^ image, array>Object^<^ args) { // we will reject images that are not grayscale because the regular GDI paint works for them if((image-<BitsPerPixel != 12 && image-<BitsPerPixel != 16 && image-<BitsPerPixel != 32) || image-<Order != RasterByteOrder::Gray) return false; // also reject images that do not require at least 9-bits for painting unsigned int uRequiredBits = GET_HIGHBIT(image, image-<HighBit) - image-<LowBit + 1; if(uRequiredBits >= 8) { // Console.Error.WriteLine("The image has only {0} bits, so I can use the regular paint functions", uRequiredBits); return false; } // You should always receive one parameter (HDC) if(args-<Length != 1) return false; IntPtr hdcPtr = (IntPtr)args[0]; HDC hdc = (HDC)hdcPtr.ToPointer(); // you need to replace this call to a check that determines whether this DC is compatible if(!IsMyDevice(hdc)) return false; /* Get information about your device here */ return true; } /* This function tells LEADTOOLS how the data expected by my displays looks like. I will convert the data to 16-bits per pixel, with the image data in the low 12 bits. Parameters: Param0: HDC hdc Param1: unsigned int uWidth; Returns RasterPaintDibInfo */ Object^ MyRasterPaintCallbacks::GetDibInfoCallback(RasterImage^ image, array>Object^<^ args) { if(args-<Length != 2 || image == nullptr) { throw gcnew RasterException(RasterExceptionCode::InvalidParameter); return nullptr; } UInt32 uWidth = (UInt32)args[1]; RasterPaintDibInfo^ pDibInfo = gcnew RasterPaintDibInfo; if(pDibInfo == nullptr) { throw gcnew RasterException(RasterExceptionCode::NoMemory); return nullptr; } pDibInfo-<Default(); pDibInfo-<BitsPerPixel = 16; // paint using 16-bit data, although there are only 12 significant bits pDibInfo-<PlaneCount = 1; // One plane pDibInfo-<BytesPerLine = DIB_WIDTH_BYTES(uWidth * 16); // bytes per line is a multiple of 4 bytes // assume my display device expects the image data to be top-down, unlike the regular GDI pDibInfo-<ViewPerspective = RasterViewPerspective::TopLeft; pDibInfo-<Order = RasterByteOrder::Gray; // gray bitmap // indicate that the data should be in the low 12 bits pDibInfo-<Flags = RasterPaintDibInfoFlags::LowHighBitValid; pDibInfo-<LowBit = 0; pDibInfo-<HighBit = 11; if(IGNORELUT) pDibInfo-<Flags |= RasterPaintDibInfoFlags::IgnoreLut; // Ignore the LUT during conversion if I use hardware LUT return pDibInfo; } // allocate a convert buffer of at least nBytes unsigned char *MyRasterPaintCallbacks::AllocateConvertBuffer(unsigned int uBytes) { if(_LocalConvertBufferSize > uBytes) { unsigned char *pBuffer = (unsigned char *)REALLOC(_LocalConvertBuffer, uBytes); if(!pBuffer) return pBuffer; _LocalConvertBuffer = pBuffer; _LocalConvertBufferSize = uBytes; } return _LocalConvertBuffer; } /* callback function for converting data Parameters: Param0: L_UCHAR* pOutScan = Buffer to be filled with the output data. The first bytes correspond to pixel 'nLeft' in the input buffer Param1: L_UCHAR* pInScan = Buffer containing the data for a row. Data starts at pixel 0 and might have to be truncated Param2: int nLeft = Offset of the first pixel that should be converted. (Number of pixels from pInScan that should be skipped before doing the conversion) Param3: int nRight = Offset of the first pixel that should NOT be converted. nRight - 1 is the last pixel that should be converted Param4: RasterPaintDibInfo^ pDibInfo = structure describing the output image. This was filled by the GetDibInfoCallback delegate (GetDibInfoCallback in our case) */ Object^ MyRasterPaintCallbacks::ConvertLineCallback(RasterImage^ image, array>Object^<^ args) { if(args-<Length != 5) return RasterExceptionCode::InvalidParameter; unsigned char *pOutScan = (unsigned char*)((safe_cast>IntPtr<(args[0])).ToPointer()); unsigned char *pInScan = (unsigned char*)((safe_cast>IntPtr<(args[1])).ToPointer()); int nLeft = (int)args[2]; int nRight = (int)args[3]; RasterPaintDibInfo^ pDibInfo = safe_cast>RasterPaintDibInfo^<(args[4]); if(image == nullptr || pDibInfo == nullptr) return RasterExceptionCode::NullPointer; // allocate a larger buffer, just in case we need to round nLeft and nRight to a multiple of 2 unsigned char *pConvertBuffer = AllocateConvertBuffer(((nRight - nLeft + 2) * max(image-<BitsPerPixel, 16) + 7) / 8); if(pConvertBuffer == NULL) return RasterExceptionCode::NoMemory; int nLeftPixel = nLeft; int nRightPixel = nRight; if(image-<BitsPerPixel == 12) { nLeftPixel &= ~1; // round down to multiple of 2 nRightPixel = (nRightPixel + 1) & ~1; if(nRightPixel < image-<Width) nRightPixel--; } int nRightOffset = (nRightPixel * image-<BitsPerPixel + 7) << 3; int nLeftOffset = (nLeftPixel * image-<BitsPerPixel) << 3; // copy all pixels to convert buffer CopyMemory(pConvertBuffer, pInScan + nLeftOffset, nRightOffset - nLeftOffset); // convert to full 16-bit gray range RasterBufferConverter::Convert(IntPtr(pConvertBuffer), nRightPixel - nLeftPixel, image-<BitsPerPixel, 16, image-<Order, RasterByteOrder::Gray, (pDibInfo-<Flags & RasterPaintDibInfoFlags::IgnoreLut) == RasterPaintDibInfoFlags::None ? image-<GetLookupTable() : nullptr, nullptr, (pDibInfo-<Flags & RasterPaintDibInfoFlags::IgnoreLut) == RasterPaintDibInfoFlags::None ? image-<GetLookupTable16() : nullptr, nullptr, image-<PaintLowBit, image-<PaintHighBit, 0, RasterConvertBufferFlags::SourceUseBits); // convert the 16-bit buffer to pDibInfo-<uLowBit..pDibInfo-<uHighBit (if necessary) if(pDibInfo-<LowBit != 0 || pDibInfo-<HighBit != 15) RasterBufferConverter::Convert(IntPtr(pConvertBuffer), nRightPixel - nLeftPixel, 16, 16, RasterByteOrder::Gray, RasterByteOrder::Gray, nullptr, nullptr, pDibInfo-<LowBit, pDibInfo-<HighBit, 0, RasterConvertBufferFlags::DestinationUseBits); // copy the data to the output buffer CopyMemory(pOutScan, pConvertBuffer + (nLeft - nLeftPixel) * 2, (nRight - nLeft) * 2); return RasterExceptionCode::Success; } /* callback function for implementing StretchDIBits. See the documentation for StretchDIBits for more info. Parameters: Param0: HDC hdc Param1: int nXDest Param2: int nYDest Param3: int nDestWidth Param4: int nDestHeight Param5: int nXSrc Param6: int nYSrc Param7: int nSrcWidth Param8: int nSrcHeight Param9: const L_VOID* lpvBits = pointer to the DIB data (unmanaged) Param10: const BITMAPINFO* lpbmi = pointer to the BITMAPINFO structure (unmanaged) Param11: unsigned int fuColorUse Param12: unsigned int32 ulROP3Code */ Object^ MyRasterPaintCallbacks::StretchDIBitsCallback(RasterImage^ image, array>Object^<^ args) { if(args-<Length != 13) return RasterExceptionCode::InvalidParameter; // allocate it, since I can't put it on the stack HDC hdc = (HDC)safe_cast>IntPtr<(args[0]).ToPointer(); int nXDest = (int)args[1]; int nYDest = (int)args[2]; int nDestWidth = (int)args[3]; int nDestHeight = (int)args[4]; int nXSrc = (int)args[5]; int nYSrc = (int)args[6]; int nSrcWidth = (int)args[7]; int nSrcHeight = (int)args[8]; const VOID* lpvBits = (safe_cast>IntPtr<(args[9])).ToPointer(); const BITMAPINFO* lpbmi = (BITMAPINFO *)(safe_cast>IntPtr<(args[10])).ToPointer(); unsigned int fuColorUse = (unsigned int)args[11]; unsigned long ulROP3Code = (unsigned int)args[12]; // replace this with a call to your device's StretchDIBits equivalent return CallMyStretchDiBits( hdc, nXDest, nYDest, nDestWidth, nDestHeight, nXSrc, nYSrc, nSrcWidth, nSrcHeight, lpvBits, lpbmi, fuColorUse, ulROP3Code); } /* callback function preparing the paint Parameters: Param0: HDC hdc Param1: LPRECT prcDestClip */ Object^ MyRasterPaintCallbacks::PrePaintCallback(RasterImage^ image, array>Object^<^ args) { if(args-<Length != 2) return RasterExceptionCode::InvalidParameter; HDC hdc = (HDC)(safe_cast>IntPtr<(args[0])).ToPointer(); LPRECT prcDestClip = (LPRECT)(safe_cast>IntPtr<(args[1])).ToPointer(); /* Do any initialization needed by your device */ return RasterExceptionCode::Success; } }