Gets or sets the threshold for large noise.
public int LargeNoiseThreshold {get; set;}
@property (nonatomic, assign) NSInteger largeNoiseThreshold;
public int getLargeNoiseThreshold();
public void setLargeNoiseThreshold(
int intValue
);
public:
property Int32 LargeNoiseThreshold
{
Int32 get()
void set(Int32 value)
}
LargeNoiseThreshold # get and set (ExtractObjectsCommand)
The threshold for the large noise. The default value is 0.
IgnoreLargeNoise must be true for this property to be used.
Objects with any dimension greater than the specified value will be ignored. If ReportIgnored is true, ExObjResult.LargeNoise will be populated with these objects.
If IgnoreSmallNoise is true, this value must be larger than the SmallNoiseThreshold.
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Iterator;
import org.junit.*;
import org.junit.runner.JUnitCore;
import org.junit.runner.Result;
import org.junit.runner.notification.Failure;
import static org.junit.Assert.*;
import leadtools.*;
import leadtools.codecs.*;
import leadtools.imageprocessing.FillCommand;
import leadtools.imageprocessing.core.*;
import leadtools.internal.Tuple;
public void extractObjectsCommandUseMultiColorsExample() {
final String LEAD_VARS_IMAGES_DIR = "C:\\LEADTOOLS23\\Resources\\Images";
RasterCodecs codecs = new RasterCodecs();
// Load the original image
RasterImage inputImage = codecs.load(combine(LEAD_VARS_IMAGES_DIR, "demoicr2.tif"));
File output = new File(combine(LEAD_VARS_IMAGES_DIR, "demoicr2.tif"));
assertTrue(output.exists());
// Setup the extraction options
Tuple<String, RasterColor>[] colors = new Tuple[3];
colors[0] = Tuple.create("DarkGray", new RasterColor(30, 30, 30));
colors[1] = Tuple.create("DarkGreen", new RasterColor(41, 108, 70));
colors[2] = Tuple.create("LightRed", new RasterColor(200, 68, 65));
ExtractObjectsCommand command = new ExtractObjectsCommand();
command.setDetectChildren(true);
command.setEightConnectivity(true);
command.setIgnoreSmallNoise(true);
command.setOutline(true);
command.setSmallNoiseThreshold(5);// Filter out noise smaller than 5x5 pixels
command.setUseMultiColors(true);
ExObjColorInfo[] exColors = new ExObjColorInfo[colors.length];
for (int i = 0; i < colors.length; i++) {
exColors[i] = new ExObjColorInfo();
exColors[i].setColor(colors[i].getItem2());
exColors[i].setThreshold(50);
}
// Extract the objects
command.run(inputImage);
ExObjData data = command.getData();
// Put objects into one list for processing all at once
ArrayList<ExObjObject> objects = new ArrayList<ExObjObject>();
Iterator<ExObjResult> it = data.iterator();
while (it.hasNext()) {
objects.addAll(it.next().getObjects());
}
// Setup the region options
ExObjRegionOptions regionOptions = new ExObjRegionOptions();
regionOptions.setHorizontal(true);
// Calculate each object's region
data.calculateRegion(objects, regionOptions);
// Create an output image
RasterImage outputImage = RasterImage.create(inputImage.getWidth(), inputImage.getHeight(), 24,
inputImage.getXResolution(), RasterColor.WHITE);
// Extract each color to a separate image
int colorIndex = -1;
for (ExObjResult result : data) {
colorIndex++;
// Fill the output image with white
new FillCommand(RasterColor.WHITE).run(outputImage);
// Populate the output image with each object's region
for (ExObjObject ob : result.getObjects()) {
for (ExObjSegment segment : ob.getRegionHorizontal()) {
// Update the region to the current segment
outputImage.addRectangleToRegion(null, segment.getBounds(), RasterRegionCombineMode.SET);
// Fill the region with the current color
new FillCommand(colors[colorIndex].getItem2()).run(outputImage);
}
}
// Clear the output image's region
outputImage.makeRegionEmpty();
// Save the output image
codecs.save(outputImage,
combine(LEAD_VARS_IMAGES_DIR, "ExtractObjectsMultiColors_" + colors[colorIndex].getItem1() + ".png"),
RasterImageFormat.PNG, 0);
}
System.out.println("Command run and image saved to: " + combine(LEAD_VARS_IMAGES_DIR, "ExtractObjects.png"));
assertTrue(new File(combine(LEAD_VARS_IMAGES_DIR, "ExtractObjects.png")).exists());
outputImage.dispose();
data.dispose();
inputImage.dispose();
codecs.dispose();
}
using Leadtools;
using Leadtools.Codecs;
using Leadtools.ImageProcessing;
using Leadtools.ImageProcessing.Core;
public void ExtractObjectsCommandUseMultiColorsExample()
{
using (RasterCodecs codecs = new RasterCodecs())
// Load the original image
using (RasterImage inputImage = codecs.Load(Path.Combine(LEAD_VARS.ImagesDir, "unwarp1.jpg")))
{
// Setup the extraction options
Tuple<string, RasterColor>[] colors = new Tuple<string, RasterColor>[]
{
Tuple.Create("DarkGray", new RasterColor(30, 30, 30)),
Tuple.Create("DarkGreen", new RasterColor(41, 108, 70)),
Tuple.Create("LightRed", new RasterColor(200, 68, 65))
};
ExtractObjectsCommand command = new ExtractObjectsCommand()
{
ColorInfo = colors
.Select(c => new ExObjColorInfo()
{
Color = c.Item2,
Threshold = 50
})
.ToArray(),
DetectChildren = true,
EightConnectivity = true,
IgnoreSmallNoise = true,
Outline = true,
SmallNoiseThreshold = 2, // Filter out noise smaller than 2x2 pixels
IgnoreLargeNoise = true,
LargeNoiseThreshold = 950, // Filter out noise larger than 950 pixels
UseMultiColors = true,
ReportIgnored = true,
};
// Extract the objects
command.Run(inputImage);
using (ExObjData data = command.Data)
{
// Put objects into one list for processing all at once, and count the noise
List<ExObjObject> objects = new List<ExObjObject>();
int smallNoiseCount = 0, largeNoiseCount = 0;
foreach (ExObjResult result in data)
{
objects.AddRange(result.Objects);
if (result.SmallNoise != null)
smallNoiseCount += result.SmallNoise.Count;
if (result.LargeNoise != null)
largeNoiseCount += result.LargeNoise.Count;
}
Console.WriteLine($"Small Noise Count: {smallNoiseCount}");
Console.WriteLine($"Large Noise Count: {largeNoiseCount}");
// Setup the region options
ExObjRegionOptions regionOptions = new ExObjRegionOptions()
{
Horizontal = true
};
// Calculate each object's region
data.CalculateRegion(objects, regionOptions);
// Create an output image
using (RasterImage outputImage = RasterImage.Create(inputImage.Width, inputImage.Height, 24, inputImage.XResolution, RasterColor.White))
{
// Extract each color to a separate image
int colorIndex = -1;
foreach (ExObjResult result in data)
{
colorIndex++;
// Fill the output image with white
new FillCommand(RasterColor.White).Run(outputImage);
// Populate the output image with each object's region
foreach (ExObjObject @object in result.Objects)
foreach (ExObjSegment segment in @object.RegionHorizontal)
{
// Update the region to the current segment
outputImage.AddRectangleToRegion(null, segment.Bounds, RasterRegionCombineMode.Set);
// Fill the region with the current color
new FillCommand(colors[colorIndex].Item2).Run(outputImage);
}
// Clear the output image's region
outputImage.MakeRegionEmpty();
// Save the output image
codecs.Save(outputImage, Path.Combine(LEAD_VARS.ImagesDir, $"ExtractObjectsMultiColors_{colors[colorIndex].Item1}.png"), RasterImageFormat.Png, 0);
}
}
}
}
}
static class LEAD_VARS
{
public const string ImagesDir = @"C:\LEADTOOLS23\Resources\Images";
}
Help Collections
Raster .NET | C API | C++ Class Library | HTML5 JavaScript
Document .NET | C API | C++ Class Library | HTML5 JavaScript
Medical .NET | C API | C++ Class Library | HTML5 JavaScript
Medical Web Viewer .NET
Multimedia
Direct Show .NET | C API | Filters
Media Foundation .NET | C API | Transforms
Supported Platforms
.NET, Java, Android, and iOS/macOS Assemblies
Imaging, Medical, and Document
C API/C++ Class Libraries
Imaging, Medical, and Document
HTML5 JavaScript Libraries
Imaging, Medical, and Document