Computes the rotation angle, XY scaling, and XY translation of the transformed image with comparison to the reference image. These are the transformations that would have to be performed to the reference image to have it match the current image. This method is available in the Document/Medical Toolkits.
public static TransformationParameters GetTransformationParameters(
RasterImage image,
LeadPoint[] referencePoints,
LeadPoint[] transformedPoints
)
Public Shared Function GetTransformationParameters( _
ByVal image As RasterImage, _
ByVal referencePoints() As LeadPoint, _
ByVal transformedPoints() As LeadPoint _
) As TransformationParameters
+ (nullable LTTransformationParameters *)getTransformationParameters:(LTRasterImage *)image
referencePoints:(nullable NSArray<NSValue *> *)referencePoints /*LeadPoint*/
transformedPoints:(nullable NSArray<NSValue *> *)transformedPoints /*LeadPoint*/
error:(NSError **)error
public static TransformationParameters getTransformationParameters(
RasterImage image,
LeadPoint[] referencePoints,
LeadPoint[] transformedPoints
)
public:
static TransformationParameters GetTransformationParameters(
RasterImage^ image,
array<LeadPoint>^ referencePoints,
array<LeadPoint>^ transformedPoints
)
image
RasterImage object that references the transformed image.
referencePoints
Pointer to an array of reference points. These points represent the center of mass points for the registration marks in the reference image. You have to provide this information.
transformedPoints
Pointer to an array of transformed points. These points are the center of mass points in the image. You have to provide this information.
For more information, refer to Detecting Registration Marks.
This example computes the translation parameters. The example makes the assumption that you have saved the position of the registration marks of the reference image in a file. You should modify this example and replace the manual assignment of the rmData with your own code to load the reference registration mark data before testing this example.
using Leadtools;
using Leadtools.Codecs;
using Leadtools.ImageProcessing;
using Leadtools.ImageProcessing.Core;
using LeadtoolsExamples.Common;
public void GetTransformationParametersExample()
{
// Load an image
RasterCodecs codecs = new RasterCodecs();
codecs.ThrowExceptionsOnInvalidImages = true;
RasterImage image = codecs.Load(Path.Combine(LEAD_VARS.ImagesDir, "RGSRef.cmp"));
// Prepare the command
SearchRegistrationMarksCommandData[] rmData = new SearchRegistrationMarksCommandData[3];
//Mark1
rmData[0] = new SearchRegistrationMarksCommandData();
rmData[0].Rectangle = new LeadRect(680, 20, 941 - 680, 218 - 20);
rmData[0].MarkDetectedPoints = new LeadPoint[1];
rmData[0].Width = 31;
rmData[0].Height = 29;
rmData[0].Type = RegistrationMarkCommandType.TShape;
rmData[0].MinimumScale = 90;
rmData[0].MaximumScale = 110;
rmData[0].SearchMarkCount = 1;
//Mark2
rmData[1] = new SearchRegistrationMarksCommandData();
rmData[1].Rectangle = new LeadRect(665, 790, 899 - 665, 961 - 790);
rmData[1].MarkDetectedPoints = new LeadPoint[1];
rmData[1].Width = 31;
rmData[1].Height = 29;
rmData[1].Type = RegistrationMarkCommandType.TShape;
rmData[1].MinimumScale = 90;
rmData[1].MaximumScale = 110;
rmData[1].SearchMarkCount = 1;
//Mark3
rmData[2] = new SearchRegistrationMarksCommandData();
rmData[2].Rectangle = new LeadRect(7, 1073, 298 - 7, 1246 - 1073);
rmData[2].MarkDetectedPoints = new LeadPoint[1];
rmData[2].Width = 31;
rmData[2].Height = 29;
rmData[2].Type = RegistrationMarkCommandType.TShape;
rmData[2].MinimumScale = 90;
rmData[2].MaximumScale = 110;
rmData[2].SearchMarkCount = 1;
SearchRegistrationMarksCommand command1 = new SearchRegistrationMarksCommand(rmData);
command1.Run(image);
if ((rmData[2].MarkDetectedCount != 1) || (rmData[1].MarkDetectedCount != 1) || (rmData[0].MarkDetectedCount != 1))
return;
LeadPoint[] original =
{
new LeadPoint(81400, 11300),
new LeadPoint(78600, 87400),
new LeadPoint(14300, 115400)
};
LeadPoint[] detected =
{
rmData[0].MarkDetectedPoints[0],
rmData[1].MarkDetectedPoints[0],
rmData[2].MarkDetectedPoints[0]
};
//Find center of mass for detected registration marks in the transformed image
LeadPoint[] transformed = CoreUtilities.GetRegistrationMarksCenterMass(image, detected);
//Find transformation parameters
TransformationParameters parameters = CoreUtilities.GetTransformationParameters(image, original, transformed);
//Apply transformation parameters to correct the image
ApplyTransformationParametersCommand applyCommand = new ApplyTransformationParametersCommand(parameters.XTranslation, parameters.YTranslation, parameters.Angle, parameters.XScale, parameters.YScale,
ApplyTransformationParametersCommandFlags.Normal);
applyCommand.Run(image);
}
static class LEAD_VARS
{
public const string ImagesDir = @"C:\Users\Public\Documents\LEADTOOLS Images";
}
Imports Leadtools
Imports Leadtools.Codecs
Imports Leadtools.ImageProcessing.Core
Public Sub GetTransformationParametersExample()
Dim codecs As New RasterCodecs()
codecs.ThrowExceptionsOnInvalidImages = True
Dim leadImage As RasterImage = codecs.Load(Path.Combine(LEAD_VARS.ImagesDir, "RGSRef.cmp"))
' Prepare the command
Dim rmData(2) As SearchRegistrationMarksCommandData
' Mark1
rmData(0) = New SearchRegistrationMarksCommandData
rmData(0).Rectangle = New LeadRect(680, 20, 941 - 680, 218 - 20)
Dim pt0(0) As LeadPoint
rmData(0).MarkDetectedPoints = pt0
rmData(0).Width = 31
rmData(0).Height = 29
rmData(0).Type = RegistrationMarkCommandType.TShape
rmData(0).MinimumScale = 90
rmData(0).MaximumScale = 110
rmData(0).SearchMarkCount = 1
' Mark2
rmData(1) = New SearchRegistrationMarksCommandData
rmData(1).Rectangle = New LeadRect(665, 790, 899 - 665, 961 - 790)
Dim pt1(0) As LeadPoint
rmData(1).MarkDetectedPoints = pt1
rmData(1).Width = 31
rmData(1).Height = 29
rmData(1).Type = RegistrationMarkCommandType.TShape
rmData(1).MinimumScale = 90
rmData(1).MaximumScale = 110
rmData(1).SearchMarkCount = 1
' Mark3
rmData(2) = New SearchRegistrationMarksCommandData
rmData(2).Rectangle = New LeadRect(7, 1073, 298 - 7, 1246 - 1073)
Dim pt2(0) As LeadPoint
rmData(2).MarkDetectedPoints = pt2
rmData(2).Width = 31
rmData(2).Height = 29
rmData(2).Type = RegistrationMarkCommandType.TShape
rmData(2).MinimumScale = 90
rmData(2).MaximumScale = 110
rmData(2).SearchMarkCount = 1
Dim command1 As New SearchRegistrationMarksCommand(rmData)
command1.Run(leadImage)
If ((rmData(2).MarkDetectedCount <> 1) OrElse (rmData(1).MarkDetectedCount <> 1) OrElse (rmData(0).MarkDetectedCount <> 1)) Then
Return
End If
Dim original() As LeadPoint =
{
New LeadPoint(81400, 11300),
New LeadPoint(78600, 87400),
New LeadPoint(14300, 115400)
}
Dim detected() As LeadPoint =
{
rmData(0).MarkDetectedPoints(0),
rmData(1).MarkDetectedPoints(0),
rmData(2).MarkDetectedPoints(0)
}
' Find center of mass for detected registration marks in the transformed image
Dim transformed() As LeadPoint = CoreUtilities.GetRegistrationMarksCenterMass(leadImage, detected)
' Find transformation parameters
Dim parameters As TransformationParameters = CoreUtilities.GetTransformationParameters(leadImage, original, transformed)
' Apply transformatin parameters to correct the image
Dim applyCommand As New ApplyTransformationParametersCommand(parameters.XTranslation, parameters.YTranslation,
parameters.Angle, parameters.XScale,
parameters.YScale, ApplyTransformationParametersCommandFlags.Normal)
applyCommand.Run(leadImage)
End Sub
Public NotInheritable Class LEAD_VARS
Public Const ImagesDir As String = "C:\Users\Public\Documents\LEADTOOLS Images"
End Class
Leadtools.ImageProcessing.Effects.CombineCommand
Leadtools.ImageProcessing.RotateCommand
Leadtools.ImageProcessing.SizeCommand
Leadtools.ImageProcessing.ResizeCommand
Help Collections
Raster .NET | C API | C++ Class Library | HTML5 JavaScript
Document .NET | C API | C++ Class Library | HTML5 JavaScript
Medical .NET | C API | C++ Class Library | HTML5 JavaScript
Medical Web Viewer .NET
Multimedia
Direct Show .NET | C API | Filters
Media Foundation .NET | C API | Transforms
Supported Platforms
.NET, Java, Android, and iOS/macOS Assemblies
Imaging, Medical, and Document
C API/C++ Class Libraries
Imaging, Medical, and Document
HTML5 JavaScript Libraries
Imaging, Medical, and Document